April 2016
TU Darmstadt | Institut für Stromrichtertechnik und Antriebsregelung | Mitja Stachowiak
1
Using wide bandgap devices for switched-mode power supplies
Proseminar
Tutor: M.Sc. Alexander Sauer
By Mitja Stachowiak
Open Text
Introduction
Idea:
Required:
180 W \text{ } 19.5 \text{V DC} \text{ } 1.2 \frac{\text{W}}{\text{cm}^3} \text{ } 94 \text{\% efficiency}
Can new wide bandgap devices be used to fulfill this requirements?
Material table
Modifications are stored until page refresh!
Wide Bandgap
Impact ionization
Collision of moving carriers with crystal atoms causes new electron-hole-pairs
Reason for avalanche breakdown
A moving carrier creates
$\alpha_{n/p} = a_{n/p} \cdot e^{-\frac{b_{n/p}}{E}}$
electron-hole-pairs per meter
Temperature dependent!
Different for electrons and holes!
Wide Bandgap: More energy required to push an electron into the conduction band
Voltage blocking capability
Avalanche depends on drift length and field strength (gradient)
Assume
$\alpha_n = \alpha_p = \alpha$
An electron-hole-pair causes
$\int_0^L \alpha(x) \mathrm{d}x$
impact ionizations
Avalanche occurs, if this integral is
$\ge 1$
Homogeneous field:
$V_{BR} = \frac{b \cdot L}{ln(L \cdot a)}$
Linear field: solve
$\int_0^L a \cdot e^{- \frac{b \cdot L^2}{2 \cdot V_{BR} \cdot x}} \mathrm{d}x - 1 = 0$
Necessary dopant density:
$N_D = \frac{2 \cdot \epsilon_0 \cdot \epsilon_r \cdot V_{BR}}{q_0 \cdot L^2}$
$\alpha_n \ne \alpha_p$
:
Calc with
$\alpha = \alpha_n$
Calc with
$\alpha = \alpha_p$
Take the maximum/minimum!
On-Resistance
Specific on-resistance:
$\rho = \frac{1}{q_0 \cdot \mu_n \cdot N_D}$ \text{ } $R_{DS, on} \cdot A = \rho \cdot L = \frac{L^3}{2 \cdot \epsilon_0 \cdot \epsilon_r \cdot \mu_n \cdot V_{BR}}$
Simplification:
Assume critical maximum field strength as avalanche condition
$R_{DS, on} \cdot A = \frac{4 \cdot V_{BR}^2}{\epsilon_0 \cdot \epsilon_r \cdot \mu_n \cdot E_{crit}^3}$
$BFoM = \epsilon_r \cdot \mu_n \cdot E_{crit}^3$
N-drift zone resistance of GaN by a factor of 2000-8000 lower than Si
Channel- and packaging resistance dominate for low voltages!
GaN limit not reachable for <200V: Degeneration/Zener breakdown
Linear field in a MOSFET
{ action : function () { document.getElementById('MOStype').src = 'images/NMOS.svg'; } }
{ action : function () { document.getElementById('MOStype').src = 'images/NMOS_ld.svg'; } }
{ action : function () { document.getElementById('MOStype').src = 'images/NMOS_resurf.svg'; } }
{ action : function () { document.getElementById('MOStype').src = 'images/NMOS_vertical.svg'; } }
Temperature stability
High temperature stability:
No benefit for laptop SMPS!
Problems with application of GaN
High PN-threshold voltage, short carrier lifetime
Wide bandgap is unattractive for plasma devices (BJT, IGBT)
No natural gate oxide
Gate dielectric has to be built with aluminium oxide or silicon nitride
High production effort
Difficult crystal growth
GaN bulk too expensive
No vertical GaN devices
Grow GaN on Si-wavers
Only thin, lateral devices possible
Gate driver and power transistor on same chip
HEMT
An other FET device type for GaN:
Difficult to built a normally-off, insulated gate HEMT
Questions?
Image sources:
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6824031
https://upload.wikimedia.org/wikipedia/commons/3/30/High_Electron_MobilityTransistor_-_electron_energy_band_structure_%28DE%29.svg