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Abstract

The automation of measurement and simulation for creating detailed transfer characteristics 
and other circuit analysis becomes more and more important. Currently, scripts to do such 
automation are usually written in Matlab. This is because Matlab has a huge library to interact 
with common circuit simulation software.

The drawback is, that most of this scripts are weakly documented and designed for one special 
purpose only. The Matlab scripting language has no advanced code features and maintaining 
of software, written in Matlab, is very difficult.

This is the motivation of creating an automation toolchain written in a true programming 
language, that abstracts from proprietary interfaces but delivers a general interface to modify 
parameters of arbitrary simulations and returns the result data.

Based on this, it should become simple to write custom simulation drivers, that can control 
common simulation software and/or process signals from real measurement devices.

This thesis presents such a toolchain with two specialized drivers that can map the operating 
regions of power electronic circuits or synchronize two simulations or one simulation and a set 
of measurements by comparing their resulting signals.

The software can be found on https://mitjastachowiak.de/projects/simulationtoolchain/

Keywords: simulation automation, semiconductor regions, map conduction modes, compare 
simulation and measurement, find parasitic elements
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Glossar
Abbreviations
C2L Coupled  inductor  boost  converter.  The  circuit  regarded  in  this  thesis  is  shown  in 

Appendix A2.
CSV Comma/Character Separated Values: File format to store table-like data
GUI Graphical User Interface
HCL Hue-Chroma-Luminance: A color description in three components
PC Personal Computer
PCB Printed Circuit Board
RPC Remote Procedure Call: Protocol to transfer commands and data between applications. 

The format of the transferred data can be XML, bus also JSON is used.
SRC Series  Resonant  Converter: Halve bridge with capacitor in current path, that gives a 

resonant tank together  with the parasitic  inductance of  the transformer.  The circuit 
regarded in this thesis is shown in Appendix A1.

UML Unified Modeling Language: Graphical description of software modules
XML Extensible Makeup Language: Document format with nestable elements.
ZCS Zero Current Switching: There is a resonant tank in the alternating current path, so that 

the current performs a sinusoidal half wave after one transistor was turned on. The 
transistor gets turned off, after this wave becomes zero, so there is no turn-off current 
through the transistor.

ZVS Zero Voltage Switching: The turn-off of one transistor causes a tail current to commute 
to the other transistor and (dis)charges its parasitic capacity so that the voltage on this  
transistor is zero, when it turns on.

Physical symbols
F Farad
H Henry
Hz Hertz
I electric current
t time
V voltage

Circuit symbols and indices
C capacitor
D diode
L inductance
Q, S transistor
R resistor
Tr transformer
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1 Software Design
There already is a basic software, created during an industrial practical in 2018. It is written 
in Freepascal/Lazarus and can drive simulations in Plecs and xFEMM. PSpice is supported as 
well, but due to some re-engineering and the lack of a PSpice license not ready-to-use yet.

The initial project was developed for Windows, but now runs on Linux. It is possible and 
planned to deploy builds for both operating systems later.

In this context, simulation software is described with tools.

1.1 General design

There are simulation drivers, that do the simulation run control and tool support units, that 
implement  several  abstract  classes  and  interfaces  to  allow  the  software  to  control  the 
simulation tools. Both types of classes can be written in one unit each, that just need to be  
included in one uses-list to show up in the menu. And both inherit from the so called TFrame,  
which is a blank GUI form to allow easy development of graphical interfaces.

The software is designed to run several simulations in parallel. To archive this, there is a task-
queue concept and the so called netlists are clonable. This are the lists of available elements 
and parameters in the different simulation tools, that can be modified by the software. For 
parallelization, each thread can work on a copy of the initial netlist.

The simplified UML-diagram looks like this:
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Figure 1.1: UML diagram of important classes



1.2 Simulation tool support and abstraction

The abstraction of tool support orients on classic circuit  simulations, but can also address 
arbitrary simulations. When automation is used, the algorithms usually apply value changes to 
several parameters or elements, but don't process topological modifications, like reassigning of 
wire connections, to the simulation.

Each tool support is represented by a successor of TToolModel, which instances are called 
models. This class contains several sub-classes, that interfere with the tool chain.

The basic structure to hold information on elements and parameters to be modified, is the 
TNetlist-class. Each TTask, created by the drivers, holds information, which parameters of the 
netlist should be modified. The tool support implements the abstract class TTaskOperator, that 
knows  the  current  task,  netlist  and  thread.  When  a  task  is  ready  to  be  processed,  the 
TTaskOperator's prepareProcess-function is called. The TTaskOperator's basic implementation 
of  this  function  hands  over  the  task  and  netlist  to  the  driver,  which  can  then  apply  its  
modifications specified in the task.

The  TTaskOperator's  abstract  execProcess-function  must  be  implemented  to  execute  the 
external simulation tool.

After this, the TTaskOperator's evalProcess-function hands over the previously parsed result 
data to the driver and destroys the current task. This is the functionality of  TTaskOperator. 

In addition, each tool support needs to implement a custom successor of TNetlist. Each netlist 
has one main circuit, that can hold several elements or sub-circuits. Each element has multiple 
values. This yields a tree-structure of parameters, that can be modified by the drivers. The 
classes may be named netlist, circuit or element, but can also apply i. e. for field simulations, 
where an element could be a point in space.

Finally there is the TResultData class, that can be inherited to apply a custom type of data 
storage, that best fits the requirements for a certain tool. There are sub classes like TProbe1D, 
TProbeScalar, etc., that can store typical data and be used in the drivers.

1.2.1 Tool Support for Plecs

The  Plexim spice  simulation  software  offers  a  XML-RPC interface  to  enable  control  from 
external tools. Plecs can run simulations in parallel, but this is currently not possible or at  
least not documented using the XML-RPC interface.[1] So the tasks for Plecs are limited to 
just one thread.

The XML-RPC result is very weird: Each float value of a simulated signal is packed in a tree of 
XML-Elements.  Interpreting this structure with a common  XML-parser would cost too much 
computation time – even more, than the simulation itself. So a rapid finite-state-machine was 
written,  that  goes  through  the  XML without  creating  any  heap  object.  The  common 
stringToFloat-function  of  freepascal  is  also  very  slow  and  was  replaced  by  a 
readFloatFromStream inline function, that stops at the first character, that doesn’t belong to 
the float.

It turned out, that string to float conversions in general can be inexact[2]: The problem is, 
that IEEE 754 floating point numbers work with an exponent base of two, while the human 
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readable format uses base 10. There is a table to convert between both numbers. But doing 
this with double precision1 can cause inaccuracy. A sorted record of double values converted to 
string and back to double can cause flips in sequence if the exponent conversion table is just  
double precision. Since this table was stored in extended precision2,  this  problem did not 
occur  anymore  –  which  does  not  mean,  that  the  conversion  is  accurate  in  all  cases.  On 
platforms, that don’t support extended precision, the problem is potentially not solved.

1.2.2 Tool Support for xFEMM

The very often used field simulation software FEMM was improved by a fast, simplified non-
GUI version called xFEMM [3]. This can load a LUA-script, that can control the post processor. 
The raw field simulation result is unhandy, as it describes potentials at the tiling points. So  
there is a post processor in xFEMM, that offers functions for interpolating the field strength at 
a certain point in space.

The xFEMM tool support has a text memo, where short LUA snippets can be written, that print  
such values to the std-out. This is then converted into a result data probe.

For  modification,  a  parser  for  .fem-files  was  written.  This  can  completely  store  a  fem-
simulation in the TNetlist and print it to a new file. This way, a copy of the fem-file is created  
for each thread and the simulations run in parallel.

1.2.3 Tool Support for oscilloscopes

To  get  use  of  true  measures  in  the  tool  chain,  there  is  a  support  class  for  CSV-based 
oscilloscope exports. Actually the Tektronix TDS2024B is supported, which creates a folder 
with several CSV-files for each export. In addition, a file named scalar.csv can be places in the 
folder, where for example values of multimeters, that belong to the oscilloscope signals, can be 
stored.

The tool then contains no elements in its netlist but holds only one index parameter in its 
netlist’s simulation parameters record. Using this index, the desired measurement export can 
be chosen.

With this oscilloscopes support, measurements can be used like the signals of simulations in  
the tool.

1.3 Simulation drivers

Simulation drivers create tasks and/or manage modifications to the netlists. Each driver can 
implement a successor of TTask. Each task is assigned to one model, that should perform a 
simulation run.

1 double precision has 53 bits for the mantissa
2 extended precision is a weakly standardized format that, for x86 processors, holds a 64-bit mantissa
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1.3.1 Transfer Characteristic

A very  basic  driver  is  the  transfer  characteristic.  It  can  for  example  calculate  a  transfer 
characteristic of a RLC-Circuit for a frequency sweep:

The result is multidimensional: An arbitrary number of parameters, that should be modified, 
can be selected. The first one is used for the chart’s x-axis. If this should contain 20 steps at 
different frequencies and in addition, the value or R should be modified in 5 steps, the driver 
iterates through 100 simulations.

For each simulation, the characteristic can store multiple values, computed from the result 
data. There are helpers, that can find the maximum, minimum, average or similar values from 
the 1D time transient signals.

1.3.2 Patch

A patch is a driver that doesn’t create tasks but hooks into the model modification of 
other drivers and modifies parameters with custom functions of other parameters. For 
example a half bridge has two transistors, that switch with a half period delayed gate 
signal. For the simulation, this can be generated using two rectangular voltage sources. 
If i. e. a transfer characteristic wants to iterate through several switching frequencies, it 
only applies the values for one signal source and a patch can generate the second 
source’s parameters from this.

1.3.2. Patch 4



2 Switching State Chart
The idea behind the switching state chart is, to map the order of switching states. Each 
semiconductor has different states of operation: cutoff -, ohmic -, saturation region and 
so on. By specifying the voltages and currents at the semiconductor device pins, the 
driver can detect, in which region the device operates.

During one period, the device can go through different states. For the complete circuit, 
this could look like [t1: Q1 goes from saturation to ohmic region | t2: D1 goes from 
reverse to “conductive” region |...]

Each of this transition sequences during one period can cause a different behavior of 
the circuit and probably needs extra care, regarding the boundary conditions of safe 
operating state.

The idea of the switching state chart is to automatically detect this states in arbitrary 
circuits and over wide multi-dimensional parameter sweeps.

2.1 Motivation

One typical  topology,  where  this  is  of  high 
interest,  is  the  so-called  coupled  inductor 
boost  converter  (C2L).  Under  load,  the 
current through a common boost converter’s 
coil  consists  of  a  large  direct  part  and  a 
smaller  ripple.  The coil  should have a high 
inductance to keep the ripple small. But a coil 
with high inductance, that can also handle a 
large (direct) current, is also large in space.

In the coupled inductor boost converter, there 
are  two current  paths  with  two transistors. 
The  two  coils  share  a  larger  part  of  their 
magnetic  flux  and  are  reversely  wound,  so 
that  the  direct  current’s  magnetic  fields 
nullify  each  other.   This  way,  a  lot  of 
ferromagnetic material can be saved.

The drawback is, that the circuit is hard to control, as there is not just one continuous 
and one discontinuous conduction mode, but a variety of modes, where currents can 
become zero after each other or at the same time. In related work, a Matlab script was 
written, to map this modes over different output currents (x-axis) and duty cycles (y-
axis) – see figure 2.1.

But this  script  can only map modes of  exactly this topology.  It  is  not that  easy to 
rewrite this algorithm for other models, as there is a lot of optimization required.

5 2. Switching State Chart

Figure 2.1: Conduction modes of a C2L 
converter, detected using Matlab



2.2 Workflow

First of all, the driver needs a set of  Variables , that should be iterated. A variable 
usually  is  a  parameter  of  a  circuit  element.  This  parameter  can be  selected  in an 
element dialog. For each variable, a start and a stop value can be given as well as the 
number of steps in between.

A set of three variables like

I1: [1A .. 10A] in 10 steps

R1: [1kΩ .. 2kΩ] in 50 steps

V1: [100V .. 300V] in 30 steps

would create an array of  10⋅50⋅30=15000 items. It can be seen, that many variables 
quickly result in an exponentially hard problem. To reduce the computational effort, 
there  is  a  special  interpolation:  There  are  raw  steps,  where  the  state  is  always 
simulated. But the number of raw steps can be set to a low value and there is an 
additional interleave step count (See section 2.3).

Next task is to specify the semiconductors (transistors, diodes) in the circuit on the 
Switches -tab.  This  are  the  elements,  that  can  operate  in  different  regions.  To 
determine the operating region in each time step, several voltages or currents on the 
device need to be given. By selecting a supported semiconductor in the circuit, a list of  
probes appears under the element, to specify the one-dimensional time signals of this  
voltages or currents in the result data.

The given signals are analyzed for one period. It  is  not guaranteed, that  this time 
period  is  always  correctly  defined  by  capture  start  time  and  stop  time.  It  is  very 
common,  to  modify  for  example  the switching frequency as  one variable.  To offer 
better opportunities for defining the period, the triggers are used. Models for circuit  
simulations,  which  mainly  return  time  signals,  have  an  interface,  that  can  set  up 
triggers.  There is  always an  analyze begin and an  analyze end trigger.  This  can be 
capture start - and stop time, but also a rising edge of a gate signal.

When variables, semiconductors and the period are specified, the simulation may run. 
Ont the States -tab, the switching state sequences are then detected automatically and 
get a color assigned in HCL color space:

• Hue/Color component is chosen by the index of the sequence – this appears as if it 
was randomized.

• Chroma component represents the frequentness of the sequence: States that occur 
over a large set of variable combinations get a strong color, states that occur seldom 
get gray-scaled.

• Luminance component represents the number of states of the sequence. When there 
is for example high-resonant ringing in the circuit, a high number of semiconductor 
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state transitions can occur. This is indicated with a bright color, while the simple 
sequences get a dark color.

It turned out, that there are often nearly similar switching states frequently alternating 
in some areas,  which discrimination is of  no interest. To avoid the computation of 
many interleave points in this areas, the related states can be defined as equal. If a 
state A is defined equal to state B, state B will be stored for all points, where state A is  
detected. This can be done using the  = -Button at the detected states or by right-
clicking in the chart.

Once detected states and their changeable colors are re-used for newer simulations. If 
a  semiconductor  is  modified,  added  or  removed,  all  stored  states  from  earlier 
simulations have no meaning anymore and get cleared.

Finally it is not only interesting to map the switching states, but also different extra 
probe values for each result  array item. They can be selected on the  Capture -tab. 
Because there can be set an arbitrary number of such probe values, the memory size of 
the result data items is not fixed but variable as well. So the access to the result data  
array is done with some pointer casting.

When simulations  have  run,  the  captured  probes  can  be  painted  by  selecting  the 
related  probe  item  in  the  Capture -tab.  Going  to  the  States -tab  will  show  the 
switching states again. The exact number values of the probes can be displayed by 
moving the cursor over the chart.

Which variable is x- and which is the y-axis can be selected on the Variables -tab, by 

using the X  or Y -button at the bottom after selecting a variable. All other variables 
will get a track bar, where their value can be set. The chart shows a two-dimensional 
cut through the result data hyper cube.

A mouse down click on the chart will show the exact x and y-position of the cursor in 
the Variables -tab. Releasing the mouse will then trigger an extra simulation run at the 
selected point, so the probe signals can be calmly analyzed in the signal monitor(s).

2.3 Interpolation algorithm

The number of steps in which each variable is iterated is separated in two types: Raw steps 
and interleave steps. The number of raw steps is the second edit field. At this points, the 
simulation is definitely run in a first pass. The first edit field defines, how many interleave 
steps lay between two raw steps.

Setting for example 5 interleave steps between 10 raw steps would result in 10+(10−1)⋅5=55
final steps. When the first pass for computing the raw steps is finished, the interleave steps in 
the middle of two raw steps are computed in the second pass. If the number of interleave 
steps is even, the lower step next to the middle is taken. This halving of interval is repeated till  
all steps are known.

7 2. Switching State Chart



For interleave steps, a simulation is only triggered, if the surrounding points have different 
state sequences. If they are equal, it is assumed, that the same sequence also occurs at the 
interleave step’s point. The additional probe values are interpolated linearly.

For one dimension with 6 interleave steps, the order of interleave iteration could look like

1 3 4 2 4 3 4 1

with the blue raw-steps in first pass.

For multiple dimensions, the problem is more complex: There is not just one center interleave 
point, but with regard in which dimension(s) the interval is halved, many center points exist 
in  each pass.  Generally  spoken,  2n raw points  span a n-dimensional  hyper  cube between 
adjacent raw grid steps. In each hypercube, there is always one “volume” center point, where 
the interval in all dimensions is halved. If all edge points are of the same sequence, this center 
point can be assumed to be of the same sequence as well and can be interpolated. Otherwise a 
simulation has to be done for this point.

In next pass, the interval is halved in  n-1 dimensions, which gives 2n interleave points to 
regard. In the non-halved dimension, the previous volume center points become neighbors 
where same state sequence is required for interpolation.

In  the  next  pass,  the  interval  is 
halved  in  n-2  dimensions,  which 

gives  4⋅( n
n−2) interleave points to 

regard, and so on...

Figure 2.2 shows, how this works 
in  3  dimensions:  The  raw  step 
points  (1)  are  the  corners  of  the 
cube.  In  first  pass,  the  volume 
centers (a) are regarded, in second 
pass the surface centers (b), and in 
third pass the edge centers (c). The 
red highlighted b illustrates, which 
neighbors need to be of the same 
sequence to allow interpolation.

All points of (a), (b), (c) belong to 
the first halving of the interleaves. 
For  next  halving,  the  cube  is 
divided  into  8  smaller  cubes, 
whose  corners  are  the  marked 
points (1), (a), (b), (c).

With  this  algorithm,  smoothly 
pointed convexities  in  the regions 
of equal sequence can be retraced.
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During  simulations,  the  interpolation  looks 
like  Figure 2.3: The gray pixels are the step 
points  with  queued  tasks  to  be  simulated. 
The  image  shows  the  last  two  halvings  of 
interleave  step  interval.  In  the  second  last 
iteration,  there  are black  pixels,  which will 
remain empty in this iteration and are going 
to be interpolated or simulated in the final 
iteration.

It  can  be  seen,  that  the  queued tasks  only 
occur  near  the  borders  of  equal  sequence 
regions.

For the tested  SRC-chart here, only the parameters fs, 
duty cycle and Idc were changed in a certain range that 
gives 21.090 points.
In the beginning, two negligible sequences in the large 
areas were synchronized. For this test, the number of 
simulated  and  interpolated  points  was  counted  as 
shown in Figure 2.4. The interpolation algorithm could 

save more than 23  of the simulations.

2.4 State chart results

First, the results of the Matlab script, mentioned in section 2.1, should be reconstructed. The 
same model (A2) was generated in Plecs. The following 3D parameter sweep was done:

Table 2.1: Range of parameter sweep for C2L-circuit

Circuit 
Element Description Start Stop

Raw 
Steps

Interleave 
Steps

Iref Desired output current 1 A 50 A 10 5

Pulse 
Generator

Duty cycle of low transistor’s gate 
signal;  copied  to  the  high  pulse 
generator  using  a  patch  driver 
(see 1.3.2)

0.05 0.95 10 5

Vin Input voltage 300 V 500 V 3 1
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Figure 2.4: Reduction by interpolation
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The driver then generated a chart with the expected look (Figure 2.9):

Figure 2.5: discontinuous 
conduction mode currents 
with negative current

 

Figure 2.6: discontinuous 
conduction mode currents

 

Figure 2.7: discontinuous 
conduction mode currents

  

                

Figure 2.9: Switching state sequence regions of 
coupled inductance boost converter at 400 V

 

An other interesting use case of the switching state driver was the analysis of a series resonant  
converter (A1). For this model, 4 parameters were changed over a wider range to map the 
regions, where ZVS and ZCS happen.

Table 2.2: Range of parameter sweep for SRC-circuit

Parameter Description Start Stop Raw 
Steps

Interleave 
Steps

fs Frequency of high- and low gate 
pulse generator

200 kHz 280 kHz 12 5

duty cycle Duty cycle of high- and low gate 
pulse generator

0.495 0.47 10 5

Idc Output current sink I_dc 6 8 4 2

L1 Main inductance 1.1 mH 50 µH 6 4
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After days of simulation, the state sequences were mapped:

Figure 2.11: Under resonant with 
ZVS and nearly ZCS

 

Figure 2.12: Over resonant 
with loss of ZVS

 

Figure 2.13: Over resonant 
with ZVS

Figure 2.15: Under resonant with 
loss of ZVS due to long dead time

                              

Figure 2.14: Switching state chart of 
SRC, cut through 4D-result at Idc=8 A, 
L1=1.1 mH

0 V  13 V

Figure 2.16: Turn on voltage Vds,S+ 
at Idc = 8 A, L1 = 1.1 mH

By  plotting  the 
voltage  on  i. e.  high 
transistor at the time 
of  this  transistor’s 
turn  on  trigger 
(Figure  2.16),  a  raw 
estimate,  where  high 
switching  losses  can 
occur, can be made – 
as well by plotting the 
current,  when  the 
transistor  turns  off 
(Figure 2.17).

0 A  0.3 A

Figure 2.17: Turn off current at     
Idc = 8 A, L1 = 1.1 mH
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3 Simulation Synchronizer
The simulation synchronizer driver is meant to minimize differences between signals of 
two different models. This can be useful for many applications – one common case 
could be to search for fitting values of parasitic elements in a circuit. But also to adjust  
a circuit to get a desired signal.

3.1 Motivation

By  developing  resonant  switching  power  converters,  parasitic  elements  can  have 
significant influence. The stray inductance of the transformer is not a parasitic but a 
scheduled part.  But it  is difficult,  usually impossible, to build the transformer with 
exactly the planned stray inductance. Even after the transformer is built, it is difficult 
to measure the inductance, as it is non-linear.

A common task for engineers is, to watch the oscilloscope signals when launching the 
PCB and to readjust frequency, air gap or resonant capacity. For further development, it 
is then often necessary, to tune the model til it represents the real device.

This can be an annoying and time-consuming job. It can happen, that measurement 
and simulation look almost similar in one comparison, but at an other frequency, it  
appears, that they aren’t. Maybe because one parameter is too large and an other to 
small and only for the regarded conditions, the mistakes nullify.

The idea of the synchronizer driver is,  to make comparisons of  many signals – for 
example  of  different  frequencies  –  easy.  Finally  it  could  be  very  nice  to  have  an 
algorithm,  that  automatically  reduces  the  differences  between  simulations  and 
measures over night.

The job before  in  the  laboratory  then is  to  generate  oscilloscope exports  of  many 
different  operating conditions.  Especially  to test  extremely  long dead times,  where 
ringing over a long time can happen, and other weird configurations can help to allow 
adjusting different parameters against each other.

3.2 Workflow

3.2.1 Specify models and parameters

First step is to specify the models on the Models and Parameters -tab. There is one column for 
the so called variable model and one for the destination model. The variable model is the one 
with unknown parameters, that should be found so that the output signals best fit the ones 
from the destination.

Below the model selector, there is a field to enter the number of simulations, that should be 
made for each comparison of both models. Usually this number is the same for variable and 
destination model.  But  it  can for  example  happen,  that  multiple  CSV-exports  were made 
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under  same  conditions,  like  when  stepping  through  different  trigger  events  using  the 
oscilloscope’s run/stop-key.

The track  bar  is  meant to  select  the index of  simulation within each comparison.  At  the 
bottom, variables can be added to the models using the + -buttons. On the variable model’s 

column, there is the additional + unknown -button, where those parameters can be specified, 
that  should be modified in the variable  model  for  each comparison.  Variables  specify the 
parameters, that should be modified for each simulation within the comparisons to generate 
the different conditions.

For an oscilloscope measure, you just want to add one variable and select the index parameter 
of the netlist’s simulation parameters record. Then enter an “i” in the expression edit. This 
identifier represents the index of simulation within the related comparison, as selectable by 
the track bar. This way, all data exports of the oscilloscope were iterated in each comparison.

Any other identifier in the edit field will cause an extra entry below to appear, where, like in 
other drivers,  a circuit  element’s  parameter can be linked. Especially for this synchronizer 
driver’s page, identifiers can also be a table-like function of the index. Use the ↻ -button of an 
identifier’s entry to convert it into a table. Using the track bar, a different value can be entered 
for this identifier at each index.

3.2.2 Link probes

Next  step  is  to  link  the  equivalent  signals  of  both  models  on  the  Probes -tab.  Currently 
supported are only 1D-signals with real values. But scalar values are intended to be used as  
well. Each probe can have a weight, used for total result. If left empty, the weight is 1.

3.2.3 Find signal matches

On the  Matches and Constraints -tab, there can then be defined sections of the previously 
selected signals, that should be taken into account for comparison. Each section can occur 
(match) once for each relation of destination and variable model result and has a weight, like 
the probes. So if there are 5 destination and 3 variable simulations in each comparison and a 
match section without any constraint is added, it will mach 5⋅3=15 times.

To get a meaningful result, the sections need constraints. There can be exactly one duration 
constraint in each section, that specifies the duration in time for which the section should 
hold. In addition, there can be triggers. The first trigger of the destination or variable signals is 
used to align the signals in time. All other triggers then are simply constraints and must occur 
within the defined section window to get a match.

There can be added multiple expression constraints. One often used, simple approach would 
be  to  use  0=iVar−iDst.  For  all  other  identifiers  an entry  will  be  added,  which can be  a 
parameter of a circuit element, an evaluation of a result probe or the time, when a trigger 
occurs (change using the ↻ -button).
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To match a signal part in a complex scenario, where multiple transistors can switch (like in 
Figure  3.1),  several  constraints  are  required.  In  this  scenario,  the  ringing  after  different 
transistors switching was measured with totally 32 oscilloscope exports for 3 different motor 
frequencies  to  find  plausible  values  for  the  cable  capacitance  and  inductance.  While  the 
simulation  only  needs  3  runs  for  the  different  frequencies,  there  can  match  multiple 
oscilloscope measures for each simulation.

Let’s create a window of 18 µs, beginning 4 µs before channel 3 (one phase’s voltage) rises:

• duration = 18E-6

• Variable Trigger | ch3 rise | Shift: -4E-6

• Destination Trigger | ch3 rise | Shift: -4E-6

This causes 27 matches – most of them are wrong, 
because  for  example  a  situation,  where  in  the 
simulation only channel 3 rises, while channel 1 and 
2 remain low, can match an oscilloscope measure, 
where  channel 1 is already high and channels 2 and 
3  rise  at  the  same  time.  It  occurs  seldom,  that 
multiple channels switch at the same time, but this 
causes very strong ringing, so this events can easily 
be triggered by the oscilloscope.

To exclude the wrong matches, several constraints 
can  be  added.  The  compare  operator  can  be 
changed by clicking on it.

• 0 < minimum(dst.ch1)

• 0 < minimum(dst.ch2)

• 0 < minimum(var.ch1)

• 0 < minimum(var.ch2)

The minimum values of 
destination  and  var-
iable result’s channels 1 
and  2  within  the 
defined  window  must 
be larger than 100.

To find the correct match as shown in  Figure 3.2, the algorithm tests all  combinations of 
variable  and  destination  results.  For  each  pair,  the  first  variable  trigger  and  the  first  
destination trigger are taken. If one of the signals causes no trigger, this means no match. If 
the signals  trigger,  the  other  constraints  are checked.  If  one fails,  the next  occurrence  of 
variable trigger is tested, until a match is found or no further trigger in the variable result is  

3.2.3. Find signal matches 14

Figure 3.1: Long time simulation of an engine controller

Figure 3.2: Match of channel 3 rise

destination result 
(measure)

variable result
(simulation)



possible. In this case the next occurrence of destination trigger is chosen and the variable  
trigger search starts again from beginning.

There are several optimizations to speed this up for not testing further triggers, if, according to 
the constraints, a match can never happen in the regarded pair.

3.2.4 Regard differences

In  the  Difference  and  History -tab  the  previously 
selected  matches  can  be  compared.  There  is  one 
supported  method  for  difference  measure:  The 
integrated  difference.  This  means,  that  the  area 
between two signals gets summed. For signals with 
scattered x-axis steps, the algorithm needs to branch 
from  point  to  point,  to  sum  the  area  of  all  the 
trapezes, as shown in Figure 3.3.

There  are  not  many  test  cases  to  verify  the 
correctness of this summation. One thing, that was 
tested, is the result when both signals are the same. 
By default, the sum isn’t zero then, as there can be 
rounding  mistakes.  With  some  extra  if-cases,  the 
function now returns zero for identical signals.

For  each  linked  signal  from  the  Probes -tab  and  each  match  from  the   Matches  and  

Constraints -tab, one such difference can be computed. This results are displayed in the table 

at the bottom of the  Difference and History -tab. When starting a simulation from this or the 

Matches and Constraints -tab, a tuple of simulations for all indexes of variable and destination 
model is done to allow full comparison.

The difference table and the current patch for the unknown parameters (which can also be 
edited on the  Difference and History -tab) is then stored in the so-called history. The cell 
background  of  the  difference  table  indicates,  weather  this  value  has  increased  (red)  or 
decreased (green) since the previous history entry. Using the track bar, the history entry to 
show up, can be chosen.

There is a weighted result of each difference table, which is displayed in the chart. The idea is  
to compute one real average number of each table. Because the signals can have different 
physical units or simply be of totally different range, there are weighting factors for probes 
and matches, as described before. The sum is then computed as

∑
s=1

nsections (∑
m=1

ns

∑
p=1

nprobes

diff p;s ,m⋅probeWeightp⋅sectionWeights−MCF⋅ns)
ns is the number of matches of the current section s. MCF is the match count factor, which can 
be set on the  Difference and History -tab as well. This could be necessary if an extremely 
wrong patch can prevent some constraints from allowing matches. If less matches are found, 
there are less signal differences to integrate. This could mean, that completely wrong patches 
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Figure 3.3: Summation of trapezes to 
integrate difference between two signals 
from x1 til x2

 
    

1

2 3
4

5

6
7 8 9

x1 x2



get a low (zero, if  no match is found) total difference. By setting a large value for  MCF, 
comparisons with less matches get downrated.

The weighting factors can be changed later and the chart gets updated with the new weighted 
total results.

3.2.5 Start auto tuning

Finally on the  Auto Optimize -tab, a simulated annealing can be started to auto tune the 
unknown patch parameters. There is no range to be specified for the parameters, but they get 
changed in each step by a multiplicative factor:

f =a+b⋅
Tcurrent

Tstart
x i '∈[ 1

f ⋅x i   …   f⋅x i ] while p (x i '<x i)=p(x i '>x i)=50 %

T is the virtual temperature of the algorithm, which should initially be roughly in the range of  
the total difference.

f is meant to be slightly greater than 1. For example 1.3 means, that the unknown values xi get 
changed by 30 % for each comparison. The idea behind the part b of the factor f is, that for 
low temperature, we assume to be near the global minimum and do only small steps.

The parameter for cooling speed describes, how many temperature steps were taken for the 
annealing. The temperature is then linearly decreased from T start to 0.

The simulated annealing can be stopped and continued in an other launch of the program or 
after changing some parameters manually. This makes it very usable to supplement human 
actions  of  tuning the  parameters.  To  reset  the  algorithm to  T start,  use  the  Reset  Current  

Temperature -button.

3.3 Synchronizer results

The engine controller scenario is not suitable for a simulated annealing, as one simulation 
needs up to halve a minute to finish. As the true parasitics are even unknown, we cannot  
verify  the  results.  For  a  proof  of  concept,  the  SRC-circuit  was  chosen  and  instead  of 
oscilloscope measures, the same simulation model was set as destination. Then there was a 
patch-driver added to modify three parameters:

Table 3.1: SRC synchronizer destination parameters

Parameter Destination value Description

L1 1.5 mH Transformer’s main inductance, projected to primary side

LR 5 µH Transformer’s stray inductance, projected to primary side

CR 85 nF Resonant tank capacitor

Several  runs  of  the  simulated  annealing  were  done  with  this  destination  parameters  but 
different start parameters, temperatures and step change factors f. With good parameters, the 
global minimum can be found. Two interesting results are the following:
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Figure 3.4: Successful minimization in two passes of simulated annealing

A  run  with  Tstart = 70 µ,  a = 1.3, 
b = 0.1  was  done  over  3000 
temperature steps and finally looks like 
having  found  the  correct  value 
combination.

A  refinement  minimization  with 
Tstart = 10 µ,  a = 1,  b = 0.2  was  then 
started  to  further  explore  the 
minimum.

Parameter
start 
value

value after first 
minimization

value after 
refinement

L1 0.8 mH 1.4799 mH 1.5047 mH

LR 1 µH 4.0857 µH 5.0042 µH

CR 200 nF 84.104 nF 84.72 nF

weighted 
result

228.72 µ 20.862 µ 0.5005 µ

Table 3.2: Successful minimization in numbers

It seems, that only for the lower temperatures in the right hand side of  Figure 3.4 a true 
minimization  happens.  But  prior  to  minimization  it  is  not  easy  to  decide,  which  start 
parameters are “good”. There is a short extra log on the Auto Optimize -tab, that prints for 
each comparison, weather a result was accepted or rejected and with which probability.

Starting with low temperatures will not work, as there 
are local minima.  Figure 3.5 demonstrates, that a run, 
starting  from  the  same  parameters  (Table  3.3)  with 
Tstart = 1 µ,  a = 1,  b = 0.2  stucks  in  a  local  minimum. 
Only 44 of 1000 steps were accepted. For steps 0 to 6, it 
seems, the minimization asymptotically converged to an 
even  worse  minimum  and  just  jumped  to  the  final 
minimum by a good random step.

We can say, this minimization 
failed  as  we  know  the  true 
result and that a much better 
approximation  of  it  can  be 
found. 

But  by  just  comparing  the 
signals  (Figure  3.6),  many 

engineers might say, the simulation was close to measurement 
and that the chosen parameters are not that bad. We can ask the 
question, in how many cases, the model accuracy is not limited 
by topology but simply by inaccurate parameters...
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refinement 
minimization

Figure 3.5: Failed minimization
Parameter

start 
value final value

L1 0.8 mH 0.9818 mH

LR 1 µH 3.1929 µH

CR 200 nF 133.84 nF

Table 3.3: Failed minimization in 
numbers

Figure 3.6: Final difference



4 Conclusion
The software toolchain could demonstrate, that it can solve several helpful analysis jobs with a 
comparatively low effort of configuration. The simulations may run for hours or days, but this 
happens without further assistance.

None of the results is spectacular or necessarily better than a Matlab script’s result. But it can 
be  created  with  lower  effort.  An  other  important  benefit  is,  that  this  toolchain  can  run 
simulations in parallel. Matlab supports a lot of ways for parallelization, but it still costs extra 
effort  to take use of  it  in each new script.  There is  a helpful  GUI to explore results  and 
interactively start further simulations at certain points. This brings human experience together 
with the systematic analysis of computer algorithms.

The software can be extended by extra drivers for special purposes while not being bound to a 
special simulation software, as the tool support interface is very generalized and interaction 
with other simulation software (than Plecs or xFemm) can be implemented.

4.1 Problems to be solved and outlook

Regarding  the  Plecs  tool  support,  the  opportunity  of  parallelization  and  a  faster,  string-
conversion free data exchange should be investigated, as both together could allow 12 times 
more simulations within the same time even on a common PC.

It turned out, that when doing long time simulations (more than a few hours), the program 
gets very slow. The cause of this slowdown was not investigated. Possibly a loop to clear past  
log entries or queued tasks is not working as expected... For common use cases, the software  
has no unfreed memory blocks.

The interpolation of the switching state chart can cause artifacts of the interleave halving in 
multiple  dimensions,  if  a  signal  changes  rapidly  in  one dimension but  not  in  the  others. 
Generally  causes  adding  of  more  dimensions  a  higher  amount  of  points  that  need to  be 
simulated in the existing dimensions, because the algorithm then knows, if a sequence change 
in the previously unknown dimension is near. One could think about concepts to make the 
decision, weather a simulation is required, smarter.

The simulation synchronizer offers many opportunities to become faster. The tested simulated 
annealing algorithm is easy and applicable to arbitrary problems, but also very slow and not 
suitable for simulations with a longer computation time. The chosen difference measure is not 
very smart. By applying Fourier analysis or other orthogonal transformations, the evaluation 
of peaks in frequency space would be possible. A minimization algorithm can take advance of 
which matches or which characteristics of the signals are affected by which parameters. By 
using the concept of modifying known simulations for destination model, it could be possible 
to generate training data for some machine learning approaches.

With the current work, a basis for such approaches is generated. But much more and different  
models are required to continue algorithmic research.
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Appendix

Models used in simulation

A1 Series resonant converter

This is mainly the circuit of my bachelor thesis[4], reconstructed in Plecs with some simplifications – there is no parasitic capacitance at 
the transistors, as this is not provided in Plecs without some tricks.

https://mitjastachowiak.de/projects/netzteil/


A2 Coupled inductor boost converter

Rw1, L1, Rw2, L2, Lh and Tr2 represent the inductance with partly coupled magnetic flux and winding resistance. For the transistors and 
diodes, the related currents and voltages are given to output. The “useless” Iref and R1-block is used to receive a targeted output current.  
The resistor Rout is then chosen by a patch to best fit this current. A model with current sink load would have a long oscillation phase from 
startup. Note that the x-axis for output current of this model uses the desired current Iref, while the true average current through Rout can  
be slightly different.
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