
Automated Circuit Simulation Control
Toolchain
Mitja Stachowiak
Masterthesis – avril 2023
Tutor: Andrea Zingariello, M.Sc.

T E C H N I S C H E
U N I V E R S I T Ä T
D A R M S T A D T

Mitja Stachowiak
Matrikelnummer: 2010632
Studiengang: Elektrotechnik und Informationstechnik
Studienrichtung: Datentechnik

Masterthesis: Automated Circuit Simulation Control Toolchain
MA 1512-2022
Eingereicht: 10.04.2023

Betreuer: Andrea Zingariello, M.Sc.
Prof. Dr.-Ing. Gerd Griepentrog

Institut für Stromrichtertechnik und Antriebsregelung
Fachbereich Elektrotechnik und Informationstechnik
Technische Universität Darmstadt
Fraunhoferstraße 4
64283 Darmstadt

Ehrenwörtliche Erklärung

Hiermit versichere ich, die vorliegende Master-Thesis ohne Hilfe Dritter nur mit den
angegebenen Quellen und Hilfsmitteln angefertigt zu haben. Alle Stellen, die aus Quellen
entnommen wurden, sind als solche kenntlich gemacht. Diese Arbeit hat in gleicher oder
ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Reinheim, den 10.04.2023 _____________________________________
 Mitja Stachowiak

i

Abstract

The automation of measurement and simulation for creating detailed transfer characteristics
and other circuit analysis becomes more and more important. Currently, scripts to do such
automation are usually written in Matlab. This is because Matlab has a huge library to interact
with common circuit simulation software.

The drawback is, that most of this scripts are weakly documented and designed for one special
purpose only. The Matlab scripting language has no advanced code features and maintaining
of software, written in Matlab, is very difficult.

This is the motivation of creating an automation toolchain written in a true programming
language, that abstracts from proprietary interfaces but delivers a general interface to modify
parameters of arbitrary simulations and returns the result data.

Based on this, it should become simple to write custom simulation drivers, that can control
common simulation software and/or process signals from real measurement devices.

This thesis presents such a toolchain with two specialized drivers that can map the operating
regions of power electronic circuits or synchronize two simulations or one simulation and a set
of measurements by comparing their resulting signals.

The software can be found on https://mitjastachowiak.de/projects/simulationtoolchain/

Keywords: simulation automation, semiconductor regions, map conduction modes, compare
simulation and measurement, find parasitic elements

ii

https://mitjastachowiak.de/projects/simulationtoolchain/

Table of Contents
1 Software Design..1

1.1 General design..1
1.2 Simulation tool support and abstraction...2

1.2.1 Tool Support for Plecs..2
1.2.2 Tool Support for xFEMM..3
1.2.3 Tool Support for oscilloscopes..3

1.3 Simulation drivers...3
1.3.1 Transfer Characteristic...4
1.3.2 Patch..4

2 Switching State Chart...5
2.1 Motivation..5
2.2 Workflow..6
2.3 Interpolation algorithm...7
2.4 State chart results...9

3 Simulation Synchronizer..12
3.1 Motivation..12
3.2 Workflow..12

3.2.1 Specify models and parameters...12
3.2.2 Link probes..13
3.2.3 Find signal matches...13
3.2.4 Regard differences...15
3.2.5 Start auto tuning...16

3.3 Synchronizer results..16
4 Conclusion..18

4.1 Problems to be solved and outlook...18
Appendix..19

iii

List of Figures
Figure 1.1: UML diagram of important classes..1
Figure 2.1: Conduction modes of a C2L converter, detected using Matlab................................5
Figure 2.2: 3D-example of interleave halving..8
Figure 2.3: Interpolation at work (SRC)..9
Figure 2.4: Reduction by interpolation..9
Figure 2.5: discontinuous conduction mode currents with negative current...........................10
Figure 2.6: discontinuous conduction mode currents..10
Figure 2.7: discontinuous conduction mode currents..10
Figure 2.8: continuous conduction mode currents..10
Figure 2.9: Switching state sequence regions of coupled inductance boost converter at 400 V10
Figure 2.10: discontinuous conduction mode currents..10
Figure 2.11: Under resonant with ZVS and nearly ZCS...11
Figure 2.12: Over resonant with loss of ZVS...11
Figure 2.13: Over resonant with ZVS..11
Figure 2.14: Switching state chart of SRC, cut through 4D-result at Idc=8 A, L1=1.1 mH........11
Figure 2.15: Under resonant with loss of ZVS due to long dead time......................................11
Figure 2.16: Turn on voltage Vds,S+ at Idc = 8 A, L1 = 1.1 mH...11
Figure 2.17: Turn off current at Idc = 8 A, L1 = 1.1 mH..11
Figure 3.1: Long time simulation of an engine controller..14
Figure 3.2: Match of channel 3 rise...14
Figure 3.3: Summation of trapezes to integrate difference between two signals from x1 til x2 15
Figure 3.4: Successful minimization in two passes of simulated annealing.............................17
Figure 3.5: Failed minimization...17
Figure 3.6: Final difference...17

List of Tables
Table 2.1: Range of parameter sweep for C2L-circuit..9
Table 2.2: Range of parameter sweep for SRC-circuit..10
Table 3.1: SRC synchronizer destination parameters...16
Table 3.2: Successful minimization in numbers...17
Table 3.3: Failed minimization in numbers..17

iv

Glossar
Abbreviations
C2L Coupled inductor boost converter. The circuit regarded in this thesis is shown in

Appendix A2.
CSV Comma/Character Separated Values: File format to store table-like data
GUI Graphical User Interface
HCL Hue-Chroma-Luminance: A color description in three components
PC Personal Computer
PCB Printed Circuit Board
RPC Remote Procedure Call: Protocol to transfer commands and data between applications.

The format of the transferred data can be XML, bus also JSON is used.
SRC Series Resonant Converter: Halve bridge with capacitor in current path, that gives a

resonant tank together with the parasitic inductance of the transformer. The circuit
regarded in this thesis is shown in Appendix A1.

UML Unified Modeling Language: Graphical description of software modules
XML Extensible Makeup Language: Document format with nestable elements.
ZCS Zero Current Switching: There is a resonant tank in the alternating current path, so that

the current performs a sinusoidal half wave after one transistor was turned on. The
transistor gets turned off, after this wave becomes zero, so there is no turn-off current
through the transistor.

ZVS Zero Voltage Switching: The turn-off of one transistor causes a tail current to commute
to the other transistor and (dis)charges its parasitic capacity so that the voltage on this
transistor is zero, when it turns on.

Physical symbols
F Farad
H Henry
Hz Hertz
I electric current
t time
V voltage

Circuit symbols and indices
C capacitor
D diode
L inductance
Q, S transistor
R resistor
Tr transformer

v

1 Software Design
There already is a basic software, created during an industrial practical in 2018. It is written
in Freepascal/Lazarus and can drive simulations in Plecs and xFEMM. PSpice is supported as
well, but due to some re-engineering and the lack of a PSpice license not ready-to-use yet.

The initial project was developed for Windows, but now runs on Linux. It is possible and
planned to deploy builds for both operating systems later.

In this context, simulation software is described with tools.

1.1 General design

There are simulation drivers, that do the simulation run control and tool support units, that
implement several abstract classes and interfaces to allow the software to control the
simulation tools. Both types of classes can be written in one unit each, that just need to be
included in one uses-list to show up in the menu. And both inherit from the so called TFrame,
which is a blank GUI form to allow easy development of graphical interfaces.

The software is designed to run several simulations in parallel. To archive this, there is a task-
queue concept and the so called netlists are clonable. This are the lists of available elements
and parameters in the different simulation tools, that can be modified by the software. For
parallelization, each thread can work on a copy of the initial netlist.

The simplified UML-diagram looks like this:

1 1. Software Design

Figure 1.1: UML diagram of important classes

1.2 Simulation tool support and abstraction

The abstraction of tool support orients on classic circuit simulations, but can also address
arbitrary simulations. When automation is used, the algorithms usually apply value changes to
several parameters or elements, but don't process topological modifications, like reassigning of
wire connections, to the simulation.

Each tool support is represented by a successor of TToolModel, which instances are called
models. This class contains several sub-classes, that interfere with the tool chain.

The basic structure to hold information on elements and parameters to be modified, is the
TNetlist-class. Each TTask, created by the drivers, holds information, which parameters of the
netlist should be modified. The tool support implements the abstract class TTaskOperator, that
knows the current task, netlist and thread. When a task is ready to be processed, the
TTaskOperator's prepareProcess-function is called. The TTaskOperator's basic implementation
of this function hands over the task and netlist to the driver, which can then apply its
modifications specified in the task.

The TTaskOperator's abstract execProcess-function must be implemented to execute the
external simulation tool.

After this, the TTaskOperator's evalProcess-function hands over the previously parsed result
data to the driver and destroys the current task. This is the functionality of TTaskOperator.

In addition, each tool support needs to implement a custom successor of TNetlist. Each netlist
has one main circuit, that can hold several elements or sub-circuits. Each element has multiple
values. This yields a tree-structure of parameters, that can be modified by the drivers. The
classes may be named netlist, circuit or element, but can also apply i. e. for field simulations,
where an element could be a point in space.

Finally there is the TResultData class, that can be inherited to apply a custom type of data
storage, that best fits the requirements for a certain tool. There are sub classes like TProbe1D,
TProbeScalar, etc., that can store typical data and be used in the drivers.

1.2.1 Tool Support for Plecs

The Plexim spice simulation software offers a XML-RPC interface to enable control from
external tools. Plecs can run simulations in parallel, but this is currently not possible or at
least not documented using the XML-RPC interface.[1] So the tasks for Plecs are limited to
just one thread.

The XML-RPC result is very weird: Each float value of a simulated signal is packed in a tree of
XML-Elements. Interpreting this structure with a common XML-parser would cost too much
computation time – even more, than the simulation itself. So a rapid finite-state-machine was
written, that goes through the XML without creating any heap object. The common
stringToFloat-function of freepascal is also very slow and was replaced by a
readFloatFromStream inline function, that stops at the first character, that doesn’t belong to
the float.

It turned out, that string to float conversions in general can be inexact[2]: The problem is,
that IEEE 754 floating point numbers work with an exponent base of two, while the human

1.2.1. Tool Support for Plecs 2

https://forum.plexim.com/874/run-multiple-simulations-in-parallel-using-xml-rpc
https://www.lazarusforum.de/viewtopic.php?p=134826#p134826

readable format uses base 10. There is a table to convert between both numbers. But doing
this with double precision1 can cause inaccuracy. A sorted record of double values converted to
string and back to double can cause flips in sequence if the exponent conversion table is just
double precision. Since this table was stored in extended precision2, this problem did not
occur anymore – which does not mean, that the conversion is accurate in all cases. On
platforms, that don’t support extended precision, the problem is potentially not solved.

1.2.2 Tool Support for xFEMM

The very often used field simulation software FEMM was improved by a fast, simplified non-
GUI version called xFEMM [3]. This can load a LUA-script, that can control the post processor.
The raw field simulation result is unhandy, as it describes potentials at the tiling points. So
there is a post processor in xFEMM, that offers functions for interpolating the field strength at
a certain point in space.

The xFEMM tool support has a text memo, where short LUA snippets can be written, that print
such values to the std-out. This is then converted into a result data probe.

For modification, a parser for .fem-files was written. This can completely store a fem-
simulation in the TNetlist and print it to a new file. This way, a copy of the fem-file is created
for each thread and the simulations run in parallel.

1.2.3 Tool Support for oscilloscopes

To get use of true measures in the tool chain, there is a support class for CSV-based
oscilloscope exports. Actually the Tektronix TDS2024B is supported, which creates a folder
with several CSV-files for each export. In addition, a file named scalar.csv can be places in the
folder, where for example values of multimeters, that belong to the oscilloscope signals, can be
stored.

The tool then contains no elements in its netlist but holds only one index parameter in its
netlist’s simulation parameters record. Using this index, the desired measurement export can
be chosen.

With this oscilloscopes support, measurements can be used like the signals of simulations in
the tool.

1.3 Simulation drivers

Simulation drivers create tasks and/or manage modifications to the netlists. Each driver can
implement a successor of TTask. Each task is assigned to one model, that should perform a
simulation run.

1 double precision has 53 bits for the mantissa
2 extended precision is a weakly standardized format that, for x86 processors, holds a 64-bit mantissa

3 1. Software Design

https://sourceforge.net/p/xfemm/wiki/Home/

1.3.1 Transfer Characteristic

A very basic driver is the transfer characteristic. It can for example calculate a transfer
characteristic of a RLC-Circuit for a frequency sweep:

The result is multidimensional: An arbitrary number of parameters, that should be modified,
can be selected. The first one is used for the chart’s x-axis. If this should contain 20 steps at
different frequencies and in addition, the value or R should be modified in 5 steps, the driver
iterates through 100 simulations.

For each simulation, the characteristic can store multiple values, computed from the result
data. There are helpers, that can find the maximum, minimum, average or similar values from
the 1D time transient signals.

1.3.2 Patch

A patch is a driver that doesn’t create tasks but hooks into the model modification of
other drivers and modifies parameters with custom functions of other parameters. For
example a half bridge has two transistors, that switch with a half period delayed gate
signal. For the simulation, this can be generated using two rectangular voltage sources.
If i. e. a transfer characteristic wants to iterate through several switching frequencies, it
only applies the values for one signal source and a patch can generate the second
source’s parameters from this.

1.3.2. Patch 4

2 Switching State Chart
The idea behind the switching state chart is, to map the order of switching states. Each
semiconductor has different states of operation: cutoff -, ohmic -, saturation region and
so on. By specifying the voltages and currents at the semiconductor device pins, the
driver can detect, in which region the device operates.

During one period, the device can go through different states. For the complete circuit,
this could look like [t1: Q1 goes from saturation to ohmic region | t2: D1 goes from
reverse to “conductive” region |...]

Each of this transition sequences during one period can cause a different behavior of
the circuit and probably needs extra care, regarding the boundary conditions of safe
operating state.

The idea of the switching state chart is to automatically detect this states in arbitrary
circuits and over wide multi-dimensional parameter sweeps.

2.1 Motivation

One typical topology, where this is of high
interest, is the so-called coupled inductor
boost converter (C2L). Under load, the
current through a common boost converter’s
coil consists of a large direct part and a
smaller ripple. The coil should have a high
inductance to keep the ripple small. But a coil
with high inductance, that can also handle a
large (direct) current, is also large in space.

In the coupled inductor boost converter, there
are two current paths with two transistors.
The two coils share a larger part of their
magnetic flux and are reversely wound, so
that the direct current’s magnetic fields
nullify each other. This way, a lot of
ferromagnetic material can be saved.

The drawback is, that the circuit is hard to control, as there is not just one continuous
and one discontinuous conduction mode, but a variety of modes, where currents can
become zero after each other or at the same time. In related work, a Matlab script was
written, to map this modes over different output currents (x-axis) and duty cycles (y-
axis) – see figure 2.1.

But this script can only map modes of exactly this topology. It is not that easy to
rewrite this algorithm for other models, as there is a lot of optimization required.

5 2. Switching State Chart

Figure 2.1: Conduction modes of a C2L
converter, detected using Matlab

2.2 Workflow

First of all, the driver needs a set of Variables , that should be iterated. A variable
usually is a parameter of a circuit element. This parameter can be selected in an
element dialog. For each variable, a start and a stop value can be given as well as the
number of steps in between.

A set of three variables like

I1: [1A .. 10A] in 10 steps

R1: [1kΩ .. 2kΩ] in 50 steps

V1: [100V .. 300V] in 30 steps

would create an array of 10⋅50⋅30=15000 items. It can be seen, that many variables
quickly result in an exponentially hard problem. To reduce the computational effort,
there is a special interpolation: There are raw steps, where the state is always
simulated. But the number of raw steps can be set to a low value and there is an
additional interleave step count (See section 2.3).

Next task is to specify the semiconductors (transistors, diodes) in the circuit on the
Switches -tab. This are the elements, that can operate in different regions. To
determine the operating region in each time step, several voltages or currents on the
device need to be given. By selecting a supported semiconductor in the circuit, a list of
probes appears under the element, to specify the one-dimensional time signals of this
voltages or currents in the result data.

The given signals are analyzed for one period. It is not guaranteed, that this time
period is always correctly defined by capture start time and stop time. It is very
common, to modify for example the switching frequency as one variable. To offer
better opportunities for defining the period, the triggers are used. Models for circuit
simulations, which mainly return time signals, have an interface, that can set up
triggers. There is always an analyze begin and an analyze end trigger. This can be
capture start - and stop time, but also a rising edge of a gate signal.

When variables, semiconductors and the period are specified, the simulation may run.
Ont the States -tab, the switching state sequences are then detected automatically and
get a color assigned in HCL color space:

• Hue/Color component is chosen by the index of the sequence – this appears as if it
was randomized.

• Chroma component represents the frequentness of the sequence: States that occur
over a large set of variable combinations get a strong color, states that occur seldom
get gray-scaled.

• Luminance component represents the number of states of the sequence. When there
is for example high-resonant ringing in the circuit, a high number of semiconductor

2.2. Workflow 6

state transitions can occur. This is indicated with a bright color, while the simple
sequences get a dark color.

It turned out, that there are often nearly similar switching states frequently alternating
in some areas, which discrimination is of no interest. To avoid the computation of
many interleave points in this areas, the related states can be defined as equal. If a
state A is defined equal to state B, state B will be stored for all points, where state A is
detected. This can be done using the = -Button at the detected states or by right-
clicking in the chart.

Once detected states and their changeable colors are re-used for newer simulations. If
a semiconductor is modified, added or removed, all stored states from earlier
simulations have no meaning anymore and get cleared.

Finally it is not only interesting to map the switching states, but also different extra
probe values for each result array item. They can be selected on the Capture -tab.
Because there can be set an arbitrary number of such probe values, the memory size of
the result data items is not fixed but variable as well. So the access to the result data
array is done with some pointer casting.

When simulations have run, the captured probes can be painted by selecting the
related probe item in the Capture -tab. Going to the States -tab will show the
switching states again. The exact number values of the probes can be displayed by
moving the cursor over the chart.

Which variable is x- and which is the y-axis can be selected on the Variables -tab, by

using the X or Y -button at the bottom after selecting a variable. All other variables
will get a track bar, where their value can be set. The chart shows a two-dimensional
cut through the result data hyper cube.

A mouse down click on the chart will show the exact x and y-position of the cursor in
the Variables -tab. Releasing the mouse will then trigger an extra simulation run at the
selected point, so the probe signals can be calmly analyzed in the signal monitor(s).

2.3 Interpolation algorithm

The number of steps in which each variable is iterated is separated in two types: Raw steps
and interleave steps. The number of raw steps is the second edit field. At this points, the
simulation is definitely run in a first pass. The first edit field defines, how many interleave
steps lay between two raw steps.

Setting for example 5 interleave steps between 10 raw steps would result in 10+(10−1)⋅5=55
final steps. When the first pass for computing the raw steps is finished, the interleave steps in
the middle of two raw steps are computed in the second pass. If the number of interleave
steps is even, the lower step next to the middle is taken. This halving of interval is repeated till
all steps are known.

7 2. Switching State Chart

For interleave steps, a simulation is only triggered, if the surrounding points have different
state sequences. If they are equal, it is assumed, that the same sequence also occurs at the
interleave step’s point. The additional probe values are interpolated linearly.

For one dimension with 6 interleave steps, the order of interleave iteration could look like

1 3 4 2 4 3 4 1

with the blue raw-steps in first pass.

For multiple dimensions, the problem is more complex: There is not just one center interleave
point, but with regard in which dimension(s) the interval is halved, many center points exist
in each pass. Generally spoken, 2n raw points span a n-dimensional hyper cube between
adjacent raw grid steps. In each hypercube, there is always one “volume” center point, where
the interval in all dimensions is halved. If all edge points are of the same sequence, this center
point can be assumed to be of the same sequence as well and can be interpolated. Otherwise a
simulation has to be done for this point.

In next pass, the interval is halved in n-1 dimensions, which gives 2n interleave points to
regard. In the non-halved dimension, the previous volume center points become neighbors
where same state sequence is required for interpolation.

In the next pass, the interval is
halved in n-2 dimensions, which

gives 4⋅(n
n−2) interleave points to

regard, and so on...

Figure 2.2 shows, how this works
in 3 dimensions: The raw step
points (1) are the corners of the
cube. In first pass, the volume
centers (a) are regarded, in second
pass the surface centers (b), and in
third pass the edge centers (c). The
red highlighted b illustrates, which
neighbors need to be of the same
sequence to allow interpolation.

All points of (a), (b), (c) belong to
the first halving of the interleaves.
For next halving, the cube is
divided into 8 smaller cubes,
whose corners are the marked
points (1), (a), (b), (c).

With this algorithm, smoothly
pointed convexities in the regions
of equal sequence can be retraced.

2.3. Interpolation algorithm 8

Figure 2.2: 3D-example of interleave halving

c
c

b

b

b

1 1

1

b

1
1

1

b

a

b

1

1

a

c

c

c
c

c

c

c

c

c

c

During simulations, the interpolation looks
like Figure 2.3: The gray pixels are the step
points with queued tasks to be simulated.
The image shows the last two halvings of
interleave step interval. In the second last
iteration, there are black pixels, which will
remain empty in this iteration and are going
to be interpolated or simulated in the final
iteration.

It can be seen, that the queued tasks only
occur near the borders of equal sequence
regions.

For the tested SRC-chart here, only the parameters fs,
duty cycle and Idc were changed in a certain range that
gives 21.090 points.
In the beginning, two negligible sequences in the large
areas were synchronized. For this test, the number of
simulated and interpolated points was counted as
shown in Figure 2.4. The interpolation algorithm could

save more than 23 of the simulations.

2.4 State chart results

First, the results of the Matlab script, mentioned in section 2.1, should be reconstructed. The
same model (A2) was generated in Plecs. The following 3D parameter sweep was done:

Table 2.1: Range of parameter sweep for C2L-circuit

Circuit
Element Description Start Stop

Raw
Steps

Interleave
Steps

Iref Desired output current 1 A 50 A 10 5

Pulse
Generator

Duty cycle of low transistor’s gate
signal; copied to the high pulse
generator using a patch driver
(see 1.3.2)

0.05 0.95 10 5

Vin Input voltage 300 V 500 V 3 1

9 2. Switching State Chart

Figure 2.3: Interpolation at work (SRC)

Figure 2.4: Reduction by interpolation

6587

14501

2

simulated

interpolated

failed

The driver then generated a chart with the expected look (Figure 2.9):

Figure 2.5: discontinuous
conduction mode currents
with negative current

Figure 2.6: discontinuous
conduction mode currents

Figure 2.7: discontinuous
conduction mode currents

Figure 2.9: Switching state sequence regions of
coupled inductance boost converter at 400 V

An other interesting use case of the switching state driver was the analysis of a series resonant
converter (A1). For this model, 4 parameters were changed over a wider range to map the
regions, where ZVS and ZCS happen.

Table 2.2: Range of parameter sweep for SRC-circuit

Parameter Description Start Stop Raw
Steps

Interleave
Steps

fs Frequency of high- and low gate
pulse generator

200 kHz 280 kHz 12 5

duty cycle Duty cycle of high- and low gate
pulse generator

0.495 0.47 10 5

Idc Output current sink I_dc 6 8 4 2

L1 Main inductance 1.1 mH 50 µH 6 4

2.4. State chart results 10

Iref

du
ty

 c
yc

le

Figure 2.10: discontinuous
conduction mode currents

Figure 2.8: continuous
conduction mode currents

After days of simulation, the state sequences were mapped:

Figure 2.11: Under resonant with
ZVS and nearly ZCS

Figure 2.12: Over resonant
with loss of ZVS

Figure 2.13: Over resonant
with ZVS

Figure 2.15: Under resonant with
loss of ZVS due to long dead time

Figure 2.14: Switching state chart of
SRC, cut through 4D-result at Idc=8 A,
L1=1.1 mH

0 V 13 V

Figure 2.16: Turn on voltage Vds,S+
at Idc = 8 A, L1 = 1.1 mH

By plotting the
voltage on i. e. high
transistor at the time
of this transistor’s
turn on trigger
(Figure 2.16), a raw
estimate, where high
switching losses can
occur, can be made –
as well by plotting the
current, when the
transistor turns off
(Figure 2.17).

0 A 0.3 A

Figure 2.17: Turn off current at
Idc = 8 A, L1 = 1.1 mH

11 2. Switching State Chart

de
ad

 t
im

e

fs

3 Simulation Synchronizer
The simulation synchronizer driver is meant to minimize differences between signals of
two different models. This can be useful for many applications – one common case
could be to search for fitting values of parasitic elements in a circuit. But also to adjust
a circuit to get a desired signal.

3.1 Motivation

By developing resonant switching power converters, parasitic elements can have
significant influence. The stray inductance of the transformer is not a parasitic but a
scheduled part. But it is difficult, usually impossible, to build the transformer with
exactly the planned stray inductance. Even after the transformer is built, it is difficult
to measure the inductance, as it is non-linear.

A common task for engineers is, to watch the oscilloscope signals when launching the
PCB and to readjust frequency, air gap or resonant capacity. For further development, it
is then often necessary, to tune the model til it represents the real device.

This can be an annoying and time-consuming job. It can happen, that measurement
and simulation look almost similar in one comparison, but at an other frequency, it
appears, that they aren’t. Maybe because one parameter is too large and an other to
small and only for the regarded conditions, the mistakes nullify.

The idea of the synchronizer driver is, to make comparisons of many signals – for
example of different frequencies – easy. Finally it could be very nice to have an
algorithm, that automatically reduces the differences between simulations and
measures over night.

The job before in the laboratory then is to generate oscilloscope exports of many
different operating conditions. Especially to test extremely long dead times, where
ringing over a long time can happen, and other weird configurations can help to allow
adjusting different parameters against each other.

3.2 Workflow

3.2.1 Specify models and parameters

First step is to specify the models on the Models and Parameters -tab. There is one column for
the so called variable model and one for the destination model. The variable model is the one
with unknown parameters, that should be found so that the output signals best fit the ones
from the destination.

Below the model selector, there is a field to enter the number of simulations, that should be
made for each comparison of both models. Usually this number is the same for variable and
destination model. But it can for example happen, that multiple CSV-exports were made

3.2.1. Specify models and parameters 12

under same conditions, like when stepping through different trigger events using the
oscilloscope’s run/stop-key.

The track bar is meant to select the index of simulation within each comparison. At the
bottom, variables can be added to the models using the + -buttons. On the variable model’s

column, there is the additional + unknown -button, where those parameters can be specified,
that should be modified in the variable model for each comparison. Variables specify the
parameters, that should be modified for each simulation within the comparisons to generate
the different conditions.

For an oscilloscope measure, you just want to add one variable and select the index parameter
of the netlist’s simulation parameters record. Then enter an “i” in the expression edit. This
identifier represents the index of simulation within the related comparison, as selectable by
the track bar. This way, all data exports of the oscilloscope were iterated in each comparison.

Any other identifier in the edit field will cause an extra entry below to appear, where, like in
other drivers, a circuit element’s parameter can be linked. Especially for this synchronizer
driver’s page, identifiers can also be a table-like function of the index. Use the ↻ -button of an
identifier’s entry to convert it into a table. Using the track bar, a different value can be entered
for this identifier at each index.

3.2.2 Link probes

Next step is to link the equivalent signals of both models on the Probes -tab. Currently
supported are only 1D-signals with real values. But scalar values are intended to be used as
well. Each probe can have a weight, used for total result. If left empty, the weight is 1.

3.2.3 Find signal matches

On the Matches and Constraints -tab, there can then be defined sections of the previously
selected signals, that should be taken into account for comparison. Each section can occur
(match) once for each relation of destination and variable model result and has a weight, like
the probes. So if there are 5 destination and 3 variable simulations in each comparison and a
match section without any constraint is added, it will mach 5⋅3=15 times.

To get a meaningful result, the sections need constraints. There can be exactly one duration
constraint in each section, that specifies the duration in time for which the section should
hold. In addition, there can be triggers. The first trigger of the destination or variable signals is
used to align the signals in time. All other triggers then are simply constraints and must occur
within the defined section window to get a match.

There can be added multiple expression constraints. One often used, simple approach would
be to use 0=iVar−iDst. For all other identifiers an entry will be added, which can be a
parameter of a circuit element, an evaluation of a result probe or the time, when a trigger
occurs (change using the ↻ -button).

13 3. Simulation Synchronizer

To match a signal part in a complex scenario, where multiple transistors can switch (like in
Figure 3.1), several constraints are required. In this scenario, the ringing after different
transistors switching was measured with totally 32 oscilloscope exports for 3 different motor
frequencies to find plausible values for the cable capacitance and inductance. While the
simulation only needs 3 runs for the different frequencies, there can match multiple
oscilloscope measures for each simulation.

Let’s create a window of 18 µs, beginning 4 µs before channel 3 (one phase’s voltage) rises:

• duration = 18E-6

• Variable Trigger | ch3 rise | Shift: -4E-6

• Destination Trigger | ch3 rise | Shift: -4E-6

This causes 27 matches – most of them are wrong,
because for example a situation, where in the
simulation only channel 3 rises, while channel 1 and
2 remain low, can match an oscilloscope measure,
where channel 1 is already high and channels 2 and
3 rise at the same time. It occurs seldom, that
multiple channels switch at the same time, but this
causes very strong ringing, so this events can easily
be triggered by the oscilloscope.

To exclude the wrong matches, several constraints
can be added. The compare operator can be
changed by clicking on it.

• 0 < minimum(dst.ch1)

• 0 < minimum(dst.ch2)

• 0 < minimum(var.ch1)

• 0 < minimum(var.ch2)

The minimum values of
destination and var-
iable result’s channels 1
and 2 within the
defined window must
be larger than 100.

To find the correct match as shown in Figure 3.2, the algorithm tests all combinations of
variable and destination results. For each pair, the first variable trigger and the first
destination trigger are taken. If one of the signals causes no trigger, this means no match. If
the signals trigger, the other constraints are checked. If one fails, the next occurrence of
variable trigger is tested, until a match is found or no further trigger in the variable result is

3.2.3. Find signal matches 14

Figure 3.1: Long time simulation of an engine controller

Figure 3.2: Match of channel 3 rise

destination result
(measure)

variable result
(simulation)

possible. In this case the next occurrence of destination trigger is chosen and the variable
trigger search starts again from beginning.

There are several optimizations to speed this up for not testing further triggers, if, according to
the constraints, a match can never happen in the regarded pair.

3.2.4 Regard differences

In the Difference and History -tab the previously
selected matches can be compared. There is one
supported method for difference measure: The
integrated difference. This means, that the area
between two signals gets summed. For signals with
scattered x-axis steps, the algorithm needs to branch
from point to point, to sum the area of all the
trapezes, as shown in Figure 3.3.

There are not many test cases to verify the
correctness of this summation. One thing, that was
tested, is the result when both signals are the same.
By default, the sum isn’t zero then, as there can be
rounding mistakes. With some extra if-cases, the
function now returns zero for identical signals.

For each linked signal from the Probes -tab and each match from the Matches and

Constraints -tab, one such difference can be computed. This results are displayed in the table

at the bottom of the Difference and History -tab. When starting a simulation from this or the

Matches and Constraints -tab, a tuple of simulations for all indexes of variable and destination
model is done to allow full comparison.

The difference table and the current patch for the unknown parameters (which can also be
edited on the Difference and History -tab) is then stored in the so-called history. The cell
background of the difference table indicates, weather this value has increased (red) or
decreased (green) since the previous history entry. Using the track bar, the history entry to
show up, can be chosen.

There is a weighted result of each difference table, which is displayed in the chart. The idea is
to compute one real average number of each table. Because the signals can have different
physical units or simply be of totally different range, there are weighting factors for probes
and matches, as described before. The sum is then computed as

∑
s=1

nsections (∑
m=1

ns

∑
p=1

nprobes

diff p;s ,m⋅probeWeightp⋅sectionWeights−MCF⋅ns)
ns is the number of matches of the current section s. MCF is the match count factor, which can
be set on the Difference and History -tab as well. This could be necessary if an extremely
wrong patch can prevent some constraints from allowing matches. If less matches are found,
there are less signal differences to integrate. This could mean, that completely wrong patches

15 3. Simulation Synchronizer

Figure 3.3: Summation of trapezes to
integrate difference between two signals
from x1 til x2

1

2 3
4

5

6
7 8 9

x1 x2

get a low (zero, if no match is found) total difference. By setting a large value for MCF,
comparisons with less matches get downrated.

The weighting factors can be changed later and the chart gets updated with the new weighted
total results.

3.2.5 Start auto tuning

Finally on the Auto Optimize -tab, a simulated annealing can be started to auto tune the
unknown patch parameters. There is no range to be specified for the parameters, but they get
changed in each step by a multiplicative factor:

f =a+b⋅
Tcurrent

Tstart
x i '∈[1

f ⋅x i … f⋅x i] while p (x i '<x i)=p(x i '>x i)=50 %

T is the virtual temperature of the algorithm, which should initially be roughly in the range of
the total difference.

f is meant to be slightly greater than 1. For example 1.3 means, that the unknown values xi get
changed by 30 % for each comparison. The idea behind the part b of the factor f is, that for
low temperature, we assume to be near the global minimum and do only small steps.

The parameter for cooling speed describes, how many temperature steps were taken for the
annealing. The temperature is then linearly decreased from T start to 0.

The simulated annealing can be stopped and continued in an other launch of the program or
after changing some parameters manually. This makes it very usable to supplement human
actions of tuning the parameters. To reset the algorithm to T start, use the Reset Current

Temperature -button.

3.3 Synchronizer results

The engine controller scenario is not suitable for a simulated annealing, as one simulation
needs up to halve a minute to finish. As the true parasitics are even unknown, we cannot
verify the results. For a proof of concept, the SRC-circuit was chosen and instead of
oscilloscope measures, the same simulation model was set as destination. Then there was a
patch-driver added to modify three parameters:

Table 3.1: SRC synchronizer destination parameters

Parameter Destination value Description

L1 1.5 mH Transformer’s main inductance, projected to primary side

LR 5 µH Transformer’s stray inductance, projected to primary side

CR 85 nF Resonant tank capacitor

Several runs of the simulated annealing were done with this destination parameters but
different start parameters, temperatures and step change factors f. With good parameters, the
global minimum can be found. Two interesting results are the following:

3.3. Synchronizer results 16

Figure 3.4: Successful minimization in two passes of simulated annealing

A run with Tstart = 70 µ, a = 1.3,
b = 0.1 was done over 3000
temperature steps and finally looks like
having found the correct value
combination.

A refinement minimization with
Tstart = 10 µ, a = 1, b = 0.2 was then
started to further explore the
minimum.

Parameter
start
value

value after first
minimization

value after
refinement

L1 0.8 mH 1.4799 mH 1.5047 mH

LR 1 µH 4.0857 µH 5.0042 µH

CR 200 nF 84.104 nF 84.72 nF

weighted
result

228.72 µ 20.862 µ 0.5005 µ

Table 3.2: Successful minimization in numbers

It seems, that only for the lower temperatures in the right hand side of Figure 3.4 a true
minimization happens. But prior to minimization it is not easy to decide, which start
parameters are “good”. There is a short extra log on the Auto Optimize -tab, that prints for
each comparison, weather a result was accepted or rejected and with which probability.

Starting with low temperatures will not work, as there
are local minima. Figure 3.5 demonstrates, that a run,
starting from the same parameters (Table 3.3) with
Tstart = 1 µ, a = 1, b = 0.2 stucks in a local minimum.
Only 44 of 1000 steps were accepted. For steps 0 to 6, it
seems, the minimization asymptotically converged to an
even worse minimum and just jumped to the final
minimum by a good random step.

We can say, this minimization
failed as we know the true
result and that a much better
approximation of it can be
found.

But by just comparing the
signals (Figure 3.6), many

engineers might say, the simulation was close to measurement
and that the chosen parameters are not that bad. We can ask the
question, in how many cases, the model accuracy is not limited
by topology but simply by inaccurate parameters...

17 3. Simulation Synchronizer

refinement
minimization

Figure 3.5: Failed minimization
Parameter

start
value final value

L1 0.8 mH 0.9818 mH

LR 1 µH 3.1929 µH

CR 200 nF 133.84 nF

Table 3.3: Failed minimization in
numbers

Figure 3.6: Final difference

4 Conclusion
The software toolchain could demonstrate, that it can solve several helpful analysis jobs with a
comparatively low effort of configuration. The simulations may run for hours or days, but this
happens without further assistance.

None of the results is spectacular or necessarily better than a Matlab script’s result. But it can
be created with lower effort. An other important benefit is, that this toolchain can run
simulations in parallel. Matlab supports a lot of ways for parallelization, but it still costs extra
effort to take use of it in each new script. There is a helpful GUI to explore results and
interactively start further simulations at certain points. This brings human experience together
with the systematic analysis of computer algorithms.

The software can be extended by extra drivers for special purposes while not being bound to a
special simulation software, as the tool support interface is very generalized and interaction
with other simulation software (than Plecs or xFemm) can be implemented.

4.1 Problems to be solved and outlook

Regarding the Plecs tool support, the opportunity of parallelization and a faster, string-
conversion free data exchange should be investigated, as both together could allow 12 times
more simulations within the same time even on a common PC.

It turned out, that when doing long time simulations (more than a few hours), the program
gets very slow. The cause of this slowdown was not investigated. Possibly a loop to clear past
log entries or queued tasks is not working as expected... For common use cases, the software
has no unfreed memory blocks.

The interpolation of the switching state chart can cause artifacts of the interleave halving in
multiple dimensions, if a signal changes rapidly in one dimension but not in the others.
Generally causes adding of more dimensions a higher amount of points that need to be
simulated in the existing dimensions, because the algorithm then knows, if a sequence change
in the previously unknown dimension is near. One could think about concepts to make the
decision, weather a simulation is required, smarter.

The simulation synchronizer offers many opportunities to become faster. The tested simulated
annealing algorithm is easy and applicable to arbitrary problems, but also very slow and not
suitable for simulations with a longer computation time. The chosen difference measure is not
very smart. By applying Fourier analysis or other orthogonal transformations, the evaluation
of peaks in frequency space would be possible. A minimization algorithm can take advance of
which matches or which characteristics of the signals are affected by which parameters. By
using the concept of modifying known simulations for destination model, it could be possible
to generate training data for some machine learning approaches.

With the current work, a basis for such approaches is generated. But much more and different
models are required to continue algorithmic research.

4.1. Problems to be solved and outlook 18

Appendix

Models used in simulation

A1 Series resonant converter

This is mainly the circuit of my bachelor thesis[4], reconstructed in Plecs with some simplifications – there is no parasitic capacitance at
the transistors, as this is not provided in Plecs without some tricks.

https://mitjastachowiak.de/projects/netzteil/

A2 Coupled inductor boost converter

Rw1, L1, Rw2, L2, Lh and Tr2 represent the inductance with partly coupled magnetic flux and winding resistance. For the transistors and
diodes, the related currents and voltages are given to output. The “useless” Iref and R1-block is used to receive a targeted output current.
The resistor Rout is then chosen by a patch to best fit this current. A model with current sink load would have a long oscillation phase from
startup. Note that the x-axis for output current of this model uses the desired current Iref, while the true average current through Rout can
be slightly different.

Bibliography
[1] Plecs Forum: Run multiple simulations in parallel using XML-RPC:

https://forum.plexim.com/874/run-multiple-simulations-in-parallel-using-xml-rpc (called
in avril 2019)

[2] Lazarusforum: Rechenfehler mit Double-Gleitkommewerten:
https://www.lazarusforum.de/viewtopic.php?p=134826#p134826 (called in avril 2023)

[3] Source Forge page of xFEMM-project: https://sourceforge.net/p/xfemm/wiki/Home/
(called in 2023)

[4] Stachowiak, M.: Design of a compact 200 WDC/DC converter, 2017
(https://mitjastachowiak.de/projects/netzteil/)

21 . Appendix

https://mitjastachowiak.de/projects/netzteil/
https://sourceforge.net/p/xfemm/wiki/Home/
https://www.lazarusforum.de/viewtopic.php?p=134826#p134826
https://forum.plexim.com/874/run-multiple-simulations-in-parallel-using-xml-rpc

	1 Software Design
	1.1 General design
	1.2 Simulation tool support and abstraction
	1.2.1 Tool Support for Plecs
	1.2.2 Tool Support for xFEMM
	1.2.3 Tool Support for oscilloscopes

	1.3 Simulation drivers
	1.3.1 Transfer Characteristic
	1.3.2 Patch

	2 Switching State Chart
	2.1 Motivation
	2.2 Workflow
	2.3 Interpolation algorithm
	2.4 State chart results

	3 Simulation Synchronizer
	3.1 Motivation
	3.2 Workflow
	3.2.1 Specify models and parameters
	3.2.2 Link probes
	3.2.3 Find signal matches
	3.2.4 Regard differences
	3.2.5 Start auto tuning

	3.3 Synchronizer results

	4 Conclusion
	4.1 Problems to be solved and outlook

	Appendix

		2023-06-14T22:48:49+0200

